If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18+x-4x^2=0
a = -4; b = 1; c = +18;
Δ = b2-4ac
Δ = 12-4·(-4)·18
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-17}{2*-4}=\frac{-18}{-8} =2+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+17}{2*-4}=\frac{16}{-8} =-2 $
| y=-3^2+1 | | b-|7|=15.8 | | 18w-(8w-7)=67 | | 12b-(9-7(5b-6))=0 | | 6y^2-5y=14 | | 42=x+25 | | 8x+74=2x+56 | | 6y^2-5y14=0 | | (q+2)/5=(2q+11)/7 | | 972+y=748 | | -92=-4x+6(2x+8) | | p+(-10)=17 | | y=2^3+2 | | 5x/4+2/5=4x-1/2 | | 6y^2-5y-14=0 | | 2(x+12)=20 | | 11x=-165 | | 48x+56-168=35x-21 | | 5x/4+2/5=4€-1/2 | | 3=48p | | 3=$48p | | 3x+7-5x-4=67 | | x-64x^2=0 | | p=$48-3 | | n-7+7n=-7 | | 8(x+5)+8(x+5)=5x-5 | | 6R+7(1-r)=13 | | 0,12x-180=0,10x | | 50x3=2 | | 0,12x-180x=0,10x | | (5x+4)(8x-3)=79 | | 50x3=3 |